High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (-)RNA and (+)RNA of influenza A virus in cell culture

TiO2·PL-DNA 纳米复合材料在细胞培养中针对甲型流感病毒 (-)RNA 和 (+)RNA 的保守区域具有较高的抗病毒作用

阅读:4
作者:Asya S Levina, Marina N Repkova, Elena V Bessudnova, Ekaterina I Filippova, Natalia A Mazurkova, Valentina F Zarytova

Background

The development of new antiviral drugs based on nucleic acids is under scrutiny. An important problem in this aspect is to find the most vulnerable conservative regions in the viral genome as targets for the action of these agents. Another challenge is the development of an efficient system for their delivery into cells. To solve this problem, we proposed a TiO2·PL-DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL)-containing oligonucleotides.

Conclusion

The proposed TiO2·PL-DNA nanocomposites can be successfully used for highly efficient and site-specific inhibition of influenza A virus of different subtypes. Some patterns of localization of the most vulnerable regions in IAV segment 5 for the action of DNA-based drugs were found. The (-)RNA strand of IAV segment 5 appeared to be more sensitive as compared to (+)RNA.

Results

The TiO2·PL-DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (-)RNA and (+)RNA of segment 5 of influenza A virus (IAV) were studied for their antiviral activity in MDCK cells infected with the H1N1, H5N1, and H3N2 virus subtypes. Within the negative strand of each of the studied strains, the efficiency of DNA fragments increased in the direction of its 3'-end. Thus, the DNA fragment aimed at the 3'-noncoding region of (-)RNA was the most efficient and inhibited the reproduction of different IAV subtypes by 3-4 orders of magnitude. Although to a lesser extent, the DNA fragments targeted at the AUG region of (+)RNA and the corresponding region of (-)RNA were also active. For all studied viral subtypes, the nanocomposites bearing the DNA fragments targeted to (-)RNA appeared to be more efficient than those containing fragments aimed at the corresponding (+)RNA regions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。