Abstract
The integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties. However, n-type conductive polymers remain underexplored, primarily due to their limited long-term stability. In this study, it is demonstrated that the conductive polymer poly(benzimidazobenzophenanthroline) (BBL), commonly used in organic electronic devices, can effectively support neuronal cell viability and spreading, both as a bare cell culture material and when coated with exracellular matrix proteins. This work provides a preliminary validation of BBL's potential for future integration into bioelectronic devices and in biointerfacing.
