Lesions of the basolateral amygdala and orbitofrontal cortex differentially affect acquisition and performance of a rodent gambling task

基底外侧杏仁核和眶额皮质的损伤对啮齿动物赌博任务的习得和表现有不同的影响

阅读:5
作者:Fiona D Zeeb, Catharine A Winstanley

Abstract

Risky decision making on the Iowa Gambling Task (IGT) has been observed in several psychiatric disorders, including substance abuse, schizophrenia, and pathological gambling. Such deficits are often attributed to impaired processing within the orbitofrontal cortex (OFC) because patients with damage to this area or to the amygdala, which is strongly interconnected with the OFC, can likewise show enhanced choice of high-risk options. However, whether damage to the OFC or amygdala impairs subjects' ability to learn the task, or actually affects the decision-making process itself, is currently unclear. To address these issues, rats were trained to perform a rodent gambling task (rGT) either before or after bilateral excitotoxic lesions to the basolateral amygdala (BLA) or OFC. Maximum profits in both the rGT and IGT are obtained by favoring smaller rewards associated with lower penalties, and avoiding the tempting, yet ultimately disadvantageous, large reward options. Lesions of the OFC or BLA made before task acquisition initially impaired animals' ability to determine the optimal strategy, but did not disrupt decision making in the long term. In contrast, lesions of the BLA, but not the OFC, made after the task had been acquired increased risky choice. These results suggest that, although both regions contribute to the development of appropriate choice behavior under risk, the BLA maintains a more fundamental role in guiding these decisions. The maladaptive choice pattern observed on the IGT in patients with OFC lesions could therefore partially reflect a learning deficit, whereas amygdala damage may give rise to a more robust decision-making impairment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。