Endoplasmic reticulum stress induces apoptosis of arginine vasopressin neurons in central diabetes insipidus via PI3K/Akt pathway

内质网应激通过 PI3K/Akt 通路诱导中枢性尿崩症精氨酸加压素神经元凋亡

阅读:5
作者:Ming-Feng Zhou, Zhan-Peng Feng, Yi-Chao Ou, Jun-Jie Peng, Kai Li, Hao-Dong Gong, Bing-Hui Qiu, Ya-Wei Liu, Yong-Jia Wang, Song-Tao Qi

Aims

Central diabetes insipidus (CDI), a typical complication caused by pituitary stalk injury, often occurs after surgery, trauma, or tumor compression around hypothalamic structures such as the pituitary stalk and optic chiasma. CDI is linked to decreased arginine vasopressin (AVP) neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus, along with a deficit in circulating AVP and oxytocin. However, little has been elucidated about the changes in AVP neurons in CDI. Hence, our study was designed to understand the role of several pathophysiologic changes such as endoplasmic reticulum (ER) stress and apoptosis of AVP neurons in CDI.

Conclusion

Our findings showed that AVP neurons underwent apoptosis induced by ER stress, and ER stress might play a vital role in CDI condition through the PI3K/Akt and ERK pathways.

Methods

In a novel pituitary stalk electric lesion (PEL) model to mimic CDI, immunofluorescence and immunoblotting were used to understand the underlying regulatory mechanisms.

Results

We reported that in CDI condition, generated by PEL, ER stress induced apoptosis of AVP neurons via activation of the PI3K/Akt and ERK pathways. Furthermore, application of N-acetylcysteine protected hypothalamic AVP neurons from ER stress-induced apoptosis through blocking the PI3K/Akt and ERK pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。