Robust amyloid clearance in a mouse model of Alzheimer's disease provides novel insights into the mechanism of amyloid-beta immunotherapy

阿尔茨海默病小鼠模型中强大的淀粉样蛋白清除能力为淀粉样β蛋白免疫治疗机制提供了新的见解

阅读:6
作者:Allan Wang, Pritam Das, Robert C Switzer 3rd, Todd E Golde, Joanna L Jankowsky

Abstract

Many new therapeutics for Alzheimer's disease delay the accumulation of amyloid-β (Aβ) in transgenic mice, but evidence for clearance of preexisting plaques is often lacking. Here, we demonstrate that anti-Aβ immunotherapy combined with suppression of Aβ synthesis allows significant removal of antecedent deposits. We treated amyloid-bearing tet-off APP (amyloid precursor protein) mice with doxycycline to suppress transgenic Aβ production before initiating a 12 week course of passive immunization. Animals remained on doxycycline for 3 months afterward to assess whether improvements attained during combined treatment could be maintained by monotherapy. This strategy reduced amyloid load by 52% and Aβ42 content by 28% relative to pretreatment levels, with preferential clearance of small deposits and diffuse Aβ surrounding fibrillar cores. We demonstrate that peripherally administered anti-Aβ antibody crossed the blood-brain barrier, bound to plaques, and was still be found associated with a subset of amyloid deposits many months after the final injection. Antibody accessed the brain independent of plasma Aβ levels, where it enhanced microglial internalization of aggregated Aβ. Our data support a mechanism by which passive immunization acts centrally to stimulate microglial phagocytosis of aggregated Aβ, but is opposed by the continued aggregation of newly secreted Aβ. By arresting the production of Aβ, combination therapy allows microglial clearance to work from a static amyloid burden toward a significant reduction in plaque load. Our findings suggest that combining two therapeutic approaches currently in clinical trials may improve neuropathological outcome over either alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。