Alcohol-induced serotonergic modulation: the role of histone deacetylases

酒精诱导的血清素调节:组蛋白去乙酰化酶的作用

阅读:5
作者:Marisela Agudelo, Changwon Yoo, Madhavan P Nair

Abstract

Previous studies have demonstrated that alcohol use disorders (AUDs) are regulated by multiple mechanisms such as neurotransmitters and enzymes. The neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) may contribute to alcohol effects and serotonin receptors, including 5-HT3, play an important role in AUDs. Recent studies have also implicated histone deacetylases (HDACs) and acetyltransferases (HATS) in regulation of drug addiction, and HDAC inhibitors (HDACi) have been reported as transcriptional modulators of monoaminergic neurotransmission. Therefore, we hypothesize that HDACs may play a role in ethanol-induced serotonergic modulation. The effects of ethanol on serotonin and 5-HT3, and the role HDACs, HDAC activity and the HDACi, trichostatin A (TSA), play in alcohol-induced serotonergic effects were studied. Human SK-N-MC and neurons, were treated with ethanol (0.05, 0.1 and 0.2%), and/or TSA (50 nM), and 5-HT3 levels were assessed at 24-72 h. Gene expression was evaluated by qRT-PCR and protein by western blot and flow cytometry. Serotonin release was assessed by ELISA and HDAC activity by fluorometric assay. Our results show an increase in 5-HT3 gene after ethanol treatment. Further, ethanol significantly increased HDACs 1 and 3 genes accompanied by an increased in HDAC activity while TSA significantly inhibited HDACs. Studies with TSA show a significant upregulation of ethanol effects on 5-HT3, while surprisingly TSA inhibited ethanol-induced serotonin production. These results suggest that ethanol affects 5-HT3 and serotonin through mechanisms involving HDACs and HATs. In summary, our studies demonstrate some of the novel properties of HDAC inhibitors and contribute to the understanding of the mechanisms involve in alcohol-serotonergic modulation in the CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。