Acute White Matter Tract Damage after Frontal Mild Traumatic Brain Injury

额叶轻度创伤性脑损伤后的急性白质束损伤

阅读:4
作者:Juan J Herrera, Kurt Bockhorst, Shakuntala Kondraganti, Laura Stertz, João Quevedo, Ponnada A Narayana

Abstract

Our understanding of mild traumatic brain injury (mTBI) is still in its infancy and to gain a greater understanding, relevant animal models should replicate many of the features seen in human mTBI. These include changes to diffusion tensor imaging (DTI) parameters, absence of anatomical lesions on conventional neuroimaging, and neurobehavioral deficits. The Maryland closed head TBI model causes anterior-posterior plus sagittal rotational acceleration of the brain, frequently observed with motor vehicle and sports-related TBI injuries. The injury reflects a concussive injury model without skull fracture. The goal of our study was to characterize the acute (72 h) pathophysiological changes occurring following a single mTBI using magnetic resonance imaging (MRI), behavioral assays, and histology. We assessed changes in fractional anisotropy (FA), mean (MD), longitudinal (LD), and radial (RD) diffusivities relative to pre-injury baseline measures. Significant differences were observed in both the longitudinal and radial diffusivities in the fimbria compared with baseline. A significant difference in radial diffusivity was also observed in the splenium of the corpus callosum compared with baseline. The exploratory activity of the mTBI animals was also assessed using computerized activity monitoring. A significant decrease was observed in ambulatory distance, average velocity, stereotypic counts, and vertical counts compared with baseline. Histological examination of the mTBI brain sections indicated a significant decrease in the expression of myelin basic protein in the fimbria, splenium, and internal capsule. Our findings demonstrate the vulnerability of the white matter tracts, specifically the fimbria and splenium, and the ability of DTI to identify changes to the integrity of the white matter tracts following mTBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。