Early gene expression changes in skeletal muscle from SOD1(G93A) amyotrophic lateral sclerosis animal model

SOD1(G93A)肌萎缩侧索硬化症动物模型骨骼肌早期基因表达变化

阅读:6
作者:Gabriela P de Oliveira, Jessica R Maximino, Mariana Maschietto, Edmar Zanoteli, Renato D Puga, Leandro Lima, Dirce M Carraro, Gerson Chadi

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons. Familial ALS is strongly associated to dominant mutations in the gene for Cu/Zn superoxide dismutase (SOD1). Recent evidences point to skeletal muscle as a primary target in the ALS mouse model. Wnt/PI3 K signaling pathways and epithelial-mesenchymal transition (EMT) have important roles in maintenance and repair of skeletal muscle. Wnt/PI3 K pathways and EMT gene expression profile were investigated in gastrocnemius muscle from SOD1(G93A) mouse model and age-paired wild-type control in the presymptomatic ages of 40 and 80 days aiming the early neuromuscular abnormalities that precede motor neuron death in ALS. A customized cDNA microarray platform containing 326 genes of Wnt/PI3 K and EMT was used and results revealed eight up-regulated (Loxl2, Pik4ca, Fzd9, Cul1, Ctnnd1, Snf1lk, Prkx, Dner) and nine down-regulated (Pik3c2a, Ripk4, Id2, C1qdc1, Eif2ak2, Rac3, Cds1, Inppl1, Tbl1x) genes at 40 days, and also one up-regulated (Pik3ca) and five down-regulated (Cd44, Eef2 k, Fzd2, Crebbp, Piki3r1) genes at 80 days. Also, protein-protein interaction networks grown from the differentially expressed genes of 40 and 80 days old mice have identified Grb2 and Src genes in both presymptomatic ages, thus playing a potential central role in the disease mechanisms. mRNA and protein levels for Grb2 and Src were found to be increased in 80 days old ALS mice. Gene expression changes in the skeletal muscle of transgenic ALS mice at presymptomatic periods of disease gave further evidence of early neuromuscular abnormalities that precede motor neuron death. The results were discussed in terms of initial triggering for neuronal degeneration and muscle adaptation to keep function before the onset of symptoms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。