Smoothened antagonists reverse taxane resistance in ovarian cancer

平滑拮抗剂可逆转卵巢癌的紫杉烷耐药性

阅读:6
作者:Adam D Steg, Ashwini A Katre, Kerri S Bevis, Angela Ziebarth, Zachary C Dobbin, Monjri M Shah, Ronald D Alvarez, Charles N Landen

Abstract

The hedgehog pathway has been implicated in the formation and maintenance of a variety of malignancies, including ovarian cancer; however, it is unknown whether hedgehog signaling is involved in ovarian cancer chemoresistance. The goal of this study was to determine the effects of antagonizing the hedgehog receptor, Smoothened (Smo), on chemotherapy response in ovarian cancer. Expression of hedgehog pathway members was assessed in three pairs of parental and chemotherapy-resistant ovarian cancer cell lines (A2780ip2/A2780cp20, SKOV3ip1/SKOV3TRip2, HeyA8/HeyA8MDR) using quantitative PCR and Western blot analysis. Cell lines were exposed to increasing concentrations of two different Smo antagonists (cyclopamine, LDE225) alone and in combination with carboplatin or paclitaxel. Selective knockdown of Smo, Gli1, or Gli2 was achieved using siRNA constructs. Cell viability was assessed by MTT assay. A2780cp20 and SKOV3TRip2 orthotopic xenografts were treated with vehicle, LDE225, paclitaxel, or combination therapy. Chemoresistant cell lines showed higher expression (>2-fold, P < 0.05) of hedgehog signaling components compared with their respective parental lines. Smo antagonists sensitized chemotherapy-resistant cell lines to paclitaxel, but not to carboplatin. LDE225 treatment also increased sensitivity of ALDH-positive cells to paclitaxel. A2780cp20 and SKOV3TRip2 xenografts treated with combined LDE225 and paclitaxel had significantly less tumor burden than those treated with vehicle or either agent alone. Increased taxane sensitivity seems to be mediated by a decrease in P-glycoprotein (MDR1) expression. Selective knockdown of Smo, Gli1, or Gli2 all increased taxane sensitivity. Smo antagonists reverse taxane resistance in chemoresistant ovarian cancer models, suggesting combined anti-hedgehog and chemotherapies could provide a useful therapeutic strategy for ovarian cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。