Acquisition of EGFR TKI resistance and EMT phenotype is linked with activation of IGF1R/NF-κB pathway in EGFR-mutant NSCLC

EGFR TKI 耐药性和 EMT 表型的获得与 EGFR 突变 NSCLC 中 IGF1R/NF-κB 通路的激活相关

阅读:4
作者:Ling Li #, Xiajing Gu #, Jinnan Yue, Qingnan Zhao, Dacheng Lv, Hongzhuan Chen, Lu Xu

Abstract

Epithelial-mesenchymal transition (EMT) is clinically associated with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in non-small cell lung cancers (NSCLC). However, the mechanisms promoting EMT in EGFR TKI-resistant NSCLC have not been fully elucidated. Previous studies have suggested that IGF1R signaling is involved in both acquired EGFR TKI resistance in NSCLC and induction of EMT in some types of tumor. In this study, we further explored the role of the IGF1R signaling in the acquisition of EMT phenotype associated with EGFR TKI resistance in mutant-EGFR NSCLC. Compared to gefitinib-sensitive parental cells, gefitinib-resistant (GR) cells displayed an EMT phenotype associated with increased migration and invasion abilities with the concomitant activation of IGF1R and NF-κB p65 signaling. Inhibition of IGF1R or p65 using pharmacological inhibitor or specific siRNA partially restored sensitivity to gefitinib with the concomitant reversal of EMT in GR cells. Conversely, exogenous IGF1 induced both gefitinib resistance and accompanying EMT in parental cells. We also demonstrated that IGF1R could phosphorylate downstream Akt and Erk to activate NF-κB p65. Taken together, our findings indicate that activation of IGF1R/Akt/Erk/NF-κB signaling is linked to the acquisition of EGFR TKI resistance and EMT phenotype in EGFR-mutant NSCLC and could be a novel therapeutic target for advanced NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。