Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice

雌激素诱导的雌激素受体α基因敲除小鼠大脑皮层丝裂原活化蛋白激酶级联激活

阅读:4
作者:M Singh, G Sétáló Jr, X Guan, D E Frail, C D Toran-Allerand

Abstract

We have shown previously in the developing cerebral cortex that estrogen elicits the rapid and sustained activation of multiple signaling proteins within the mitogen-activated protein (MAP) kinase cascade, including B-Raf and extracellular signal-regulated kinase (ERK). Using estrogen receptor (ER)-alpha gene-disrupted (ERKO) mice, we addressed the role of ER-alpha in mediating this action of estrogen in the brain. 17beta-Estradiol increased B-Raf activity and MEK (MAP kinase/ERK kinase)-dependent ERK phosphorylation in cerebral cortical explants derived from both ERKO and their wild-type littermates. The ERK response was stronger in ERKO-derived cultures but, unlike that of wild-type cultures, was not blocked by the estrogen receptor antagonist ICI 182,780. Surprisingly, both the ER-alpha selective ligand 16alpha-iodo-17beta-estradiol and the ER-beta selective ligand genistein failed to elicit ERK phosphorylation, suggesting that a different mechanism or receptor may mediate estrogen-induced ERK phosphorylation in the cerebral cortex. Interestingly, the transcriptionally inactive stereoisomer 17alpha-estradiol did elicit a strong induction of ERK phosphorylation, which, together with the inability of the ER-alpha- and ER-beta-selective ligands to elicit ERK phosphorylation, and of ICI 182,780 to block the actions of estradiol in ERKO cultures, supports the hypothesis that a novel, estradiol-sensitive and ICI-insensitive estrogen receptor may mediate 17beta-estradiol-induced activation of ERK in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。