PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors

PKM zeta 通过 N-乙基马来酰亚胺敏感因子/GluR2 依赖的突触后 AMPA 受体运输维持晚期长期增强作用

阅读:6
作者:Yudong Yao, Matthew Taylor Kelly, Sreedharan Sajikumar, Peter Serrano, Dezhi Tian, Peter John Bergold, Julietta Uta Frey, Todd Charlton Sacktor

Abstract

Although the maintenance mechanism of late long-term potentiation (LTP) is critical for the storage of long-term memory, the expression mechanism of synaptic enhancement during late-LTP is unknown. The autonomously active protein kinase C isoform, protein kinase Mzeta (PKMzeta), is a core molecule maintaining late-LTP. Here we show that PKMzeta maintains late-LTP through persistent N-ethylmaleimide-sensitive factor (NSF)/glutamate receptor subunit 2 (GluR2)-dependent trafficking of AMPA receptors (AMPARs) to the synapse. Intracellular perfusion of PKMzeta into CA1 pyramidal cells causes potentiation of postsynaptic AMPAR responses; this synaptic enhancement is mediated through NSF/GluR2 interactions but not vesicle-associated membrane protein-dependent exocytosis. PKMzeta may act through NSF to release GluR2-containing receptors from a reserve pool held at extrasynaptic sites by protein interacting with C-kinase 1 (PICK1), because disrupting GluR2/PICK1 interactions mimic and occlude PKMzeta-mediated AMPAR potentiation. During LTP maintenance, PKMzeta directs AMPAR trafficking, as measured by NSF/GluR2-dependent increases of GluR2/3-containing receptors in synaptosomal fractions from tetanized slices. Blocking this trafficking mechanism reverses established late-LTP and persistent potentiation at synapses that have undergone synaptic tagging and capture. Thus, PKMzeta maintains late-LTP by persistently modifying NSF/GluR2-dependent AMPAR trafficking to favor receptor insertion into postsynaptic sites.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。