Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury

抑制表皮生长因子受体可改善实验性脊髓损伤的结构、运动、感觉和膀胱恢复

阅读:7
作者:Matthias Erschbamer, Karin Pernold, Lars Olson

Abstract

Lack of axon regeneration in the adult CNS has been attributed partly to myelin inhibitors and the properties of astrocytes. After spinal cord injury, proliferating astrocytes not only represent a physical barrier to regenerating axons but also express and secrete molecules that inhibit nerve growth, including chondroitin sulfate proteoglycans (CSPGs). Epidermal growth factor receptor (EGFR) activation triggers astrocytes into becoming reactive astrocytes, and EGFR ligands stimulate the secretion of CSPGs as well as the formation of cribriform astrocyte arrangements that contribute to the formation of glial scars. Recently, it was shown that EGFR inhibitors promote nerve regeneration in vitro and in vivo. Blocking a novel Nogo receptor interacting mechanism and/or effects of EGFR inhibition on astrocytes may underlie these effects. Here we show that rats subjected to weight-drop spinal cord injury can be effectively treated by direct delivery of a potent EGFR inhibitor to the injured area, leading to significantly better functional and structural outcome. Motor and sensory functions are improved and bladder function is restored. The robust effects and the fact that other EGFR inhibitors are in clinical use in cancer treatments make these drugs particularly attractive candidates for clinical trials in spinal cord injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。