An Activating KIT Mutation Induces Crizotinib Resistance in ROS1-Positive Lung Cancer

激活 KIT 突变可诱导 ROS1 阳性肺癌产生克唑替尼耐药性

阅读:4
作者:Rafal Dziadziuszko, Anh T Le, Anna Wrona, Jacek Jassem, D Ross Camidge, Marileila Varella-Garcia, Dara L Aisner, Robert C Doebele

Conclusions

Activation of KIT by a gain-of-function somatic mutation is a novel mechanism of resistance to crizotinib in ROS1-rearranged NSCLC. This bypass signaling pathway serves as a ROS1-independent mechanism of resistance, similarly to previously identified epidermal growth factor receptor or Kirsten rat sarcoma viral oncogene homolog/neuroblastoma RAS viral oncogene homolog signaling pathways, and can potentially be targeted by KIT inhibitors.

Methods

An activating mutation in the KIT proto-oncogene receptor tyrosine kinase (KIT) (p.D816G) was identified by SNaPshot sequencing in a tumor sample from a patient with ROS1-positive NSCLC identified by fluorescence in situ hybridization whose disease progressed after initial response to crizotinib. In vitro studies included evaluation of KIT mRNA expression by quantitative reverse-transcriptase polymerase chain reactions, transduction of Ba/F3 cells and NSCLC cell lines with KIT-expressing lentiviral plasmids, immunoblotting, and cellular proliferation assays.

Results

KIT(D816G) is an activating mutation that induces autophosphorylation and cell proliferation. Expression of the mutant KIT(D816G) receptor in ROS1-positive NSCLC cell lines led to constitutively activated KIT as measured by phosphorylation of the KIT receptor. Expression of the KIT(D816G) rendered the HCC78 and CUTO2 cell lines resistant to crizotinib, and only dual inhibition of ROS1 and KIT with crizotinib and ponatinib could resensitize the cells to inhibition of proliferation. The oncogenic switch observed in ROS1-positive cell lines was not immediate and required pharmacologic inactivation of ROS1. Conclusions: Activation of KIT by a gain-of-function somatic mutation is a novel mechanism of resistance to crizotinib in ROS1-rearranged NSCLC. This bypass signaling pathway serves as a ROS1-independent mechanism of resistance, similarly to previously identified epidermal growth factor receptor or Kirsten rat sarcoma viral oncogene homolog/neuroblastoma RAS viral oncogene homolog signaling pathways, and can potentially be targeted by KIT inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。