Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag3PO4/Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants

调节光敏聚多巴胺/Ag3PO4/氧化石墨烯涂层的带隙,实现植入物的快速、非侵入性消毒

阅读:4
作者:Xianzhou Xie, Congyang Mao, Xiangmei Liu, Lei Tan, Zhenduo Cui, Xianjin Yang, Shengli Zhu, Zhaoyang Li, Xubo Yuan, Yufeng Zheng, Kelvin Wai Kwok Yeung, Paul K Chu, Shuilin Wu

Abstract

Bacterial infection and associated complications are threats to human health especially when biofilms form on biomedical devices and artificial implants. Herein, a hybrid polydopamine (PDA)/Ag3PO4/graphene oxide (GO) coating is designed and constructed to achieve rapid bacteria killing and eliminate biofilms in situ. By varying the amount of GO in the hybrid coating, the bandgap can be tuned from 2.52 to 2.0 eV so that irradiation with 660 nm visible light produces bacteria-killing effects synergistically in concert with reactive oxygen species (ROS). GO regulates the release rate of Ag+ to minimize the cytotoxicity while maintaining high antimicrobial activity, and a smaller particle size enhances the yield of ROS. After irradiation with 660 nm visible light for 15 min, the antimicrobial rates of the PDA/Ag3PO4/GO hybrid coating against Escherichia coli and Staphylococcus aureus are 99.53% and 99.66%, respectively. In addition, this hybrid coating can maintain a repeatable and sustained antibacterial efficacy. The released Ag+ and photocatalytic Ag3PO4 produce synergistic antimicrobial effects in which the ROS increases the permeability of the bacterial membranes to increase the probability of Ag+ to enter the cells to kill them together with ROS synergistically.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。