Cyclic Ruthenium-Peptide Prodrugs Penetrate the Blood-Brain Barrier and Attack Glioblastoma upon Light Activation in Orthotopic Zebrafish Tumor Models

环状钌肽前药在原位斑马鱼肿瘤模型中通过光激活穿透血脑屏障并攻击胶质母细胞瘤

阅读:7
作者:Liyan Zhang, Gangyin Zhao, Trevor Dalrymple, Yurii Husiev, Hildert Bronkhorst, Gabriel Forn-Cuní, Bruno Lopes-Bastos, Ewa Snaar-Jagalska, Sylvestre Bonnet

Abstract

The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, Ru-p(HH), Ru-p(MH), and Ru-p(MM) ([Ru(Ph2phen)2 (Ac-X1RGDX2-NH2)]Cl2 with Ph2phen = 4,7-diphenyl-1,10-phenanthroline and X1, X2 = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X1,2 bonds. Their photochemistry, activation mechanism, tumor targeting, and antitumor activity were meticulously addressed. A combined in vitro and in vivo study revealed that the photoactivated cell-killing mechanism and their O2 dependence were strongly influenced by the nature of X1 and X2. Ru-p(MM) was shown to be a photoactivated chemotherapy (PACT) drug, while Ru-p(HH) behaved as a photodynamic therapy (PDT) drug. All conjugates, however, showed comparable antitumor targeting and efficacy toward human glioblastoma 3D spheroids and orthotopic glioblastoma tumor models in zebrafish embryos. Most importantly, in this model, all three compounds could effectively cross the BBB, resulting in excellent targeting of the tumors in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。