cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum

cAMP 反应元件结合蛋白是完整纹状体而非多巴胺去神经支配纹状体中多巴胺依赖性基因表达所必需的

阅读:6
作者:M Andersson, C Konradi, M A Cenci

Abstract

The cAMP response element-binding protein (CREB) is believed to play a pivotal role in dopamine (DA) receptor-mediated nuclear signaling and neuroplasticity. Here we demonstrate that the significance of CREB for gene expression depends on the experimental paradigm. We compared the role of CREB in two different but related models: l-DOPA administration to unilaterally 6-hydroxydopamine lesioned rats, and cocaine administration to neurologically intact animals. Antisense technology was used to produce a local knockdown of CREB in the lateral caudate-putamen, a region that mediates the dyskinetic or stereotypic manifestations associated with l-DOPA or cocaine treatment, respectively. In intact rats, CREB antisense reduced both basal and cocaine-induced expression of c-Fos, FosB/DeltaFosB, and prodynorphin mRNA. In the DA-denervated striatum, CREB was not required for l-DOPA to induce these gene products, nor did CREB contribute considerably to DNA binding activity at cAMP responsive elements (CREs) and CRE-like enhancers. DeltaFosB-related proteins and JunD were the main contributors to both CRE and AP-1 DNA-protein complexes in l-DOPA-treated animals. In behavioral studies, intrastriatal CREB knockdown caused enhanced activity scores in intact control animals and exacerbated the dyskinetic effects of acute l-DOPA treatment in 6-OHDA-lesioned animals. These data demonstrate that CREB is not required for the development of l-DOPA-induced dyskinesia in hemiparkinsonian rats. Moreover, our results reveal an unexpected alteration of nuclear signaling mechanisms in the parkinsonian striatum treated with l-DOPA, where AP-1 transcription factors appear to supersede CREB in the activation of CRE-containing genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。