Plasmonic Properties of Self-Assembled Gold Nanocrescents: Implications for Chemical Sensing

自组装金纳米新月的等离子体特性:对化学传感的影响

阅读:9
作者:Marie-Pier Côté, Christina Boukouvala, Josée Richard-Daniel, Emilie Ringe, Denis Boudreau, Anna M Ritcey

Abstract

A bottom-up approach, the Langmuir-Blodgett technique, is used for the preparation of composite thin films of gold nanoparticles and polymers: poly(styrene-b-2-vinylpyridine), poly-2-vinylpyridine, and polystyrene. The self-assembly of poly(styrene-b-2-vinylpyridine) at the air-water interface leads to the formation of surface micelles, which serve as a template for the organization of gold nanoparticles into ring assemblies. By using poly-2-vinylpyridine in conjunction with low surface pressure, the distance between nanostructures can be increased, allowing for optical characterization of single nanostructures. Once deposited on a solid substrate, the preorganized gold nanoparticles are subjected to further growth by the reduction of additional gold, leading to a variety of nanostructures which can be divided into two categories: nanocrescents and circular arrays of nanoparticles. The optical properties of individual structures are investigated by optical dark-field spectroscopy and numerical calculations. The plasmonic behavior of the nanostructures is elucidated through the correlation of optical properties with structural features and the identification of dominant plasmon modes. Being based on a self-assembly approach, the reported method allows for the formation of interesting plasmonic materials under ambient conditions, at a relatively large scale, and at low cost. These attributes, in addition to the resonances located in the near-infrared region of the spectrum, make nanocrescents candidates for biological and chemical sensing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。