Highly parallel genome variant engineering with CRISPR-Cas9

利用 CRISPR-Cas9 进行高度并行的基因组变异工程

阅读:8
作者:Meru J Sadhu #, Joshua S Bloom #, Laura Day, Jake J Siegel, Sriram Kosuri, Leonid Kruglyak9

Abstract

Understanding the functional effects of DNA sequence variants is of critical importance for studies of basic biology, evolution, and medical genetics; however, measuring these effects in a high-throughput manner is a major challenge. One promising avenue is precise editing with the CRISPR-Cas9 system, which allows for generation of DNA double-strand breaks (DSBs) at genomic sites matching the targeting sequence of a guide RNA (gRNA). Recent studies have used CRISPR libraries to generate many frameshift mutations genome wide through faulty repair of CRISPR-directed breaks by nonhomologous end joining (NHEJ) 1 . Here, we developed a CRISPR-library-based approach for highly efficient and precise genome-wide variant engineering. We used our method to examine the functional consequences of premature-termination codons (PTCs) at different locations within all annotated essential genes in yeast. We found that most PTCs were highly deleterious unless they occurred close to the 3' end of the gene and did not affect an annotated protein domain. Unexpectedly, we discovered that some putatively essential genes are dispensable, whereas others have large dispensable regions. This approach can be used to profile the effects of large classes of variants in a high-throughput manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。