Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline)

多种唤醒系统(食欲素/下丘脑分泌素、组胺和去甲肾上腺素)对背缝核血清素神经元的集中兴奋

阅读:12
作者:Ritchie E Brown, Olga A Sergeeva, Krister S Eriksson, Helmut L Haas

Abstract

Dorsal raphe serotonin neurons fire tonically at a low rate during waking. In vitro, however, they are not spontaneously active, indicating that afferent inputs are necessary for tonic firing. Agonists of three arousal-related systems impinging on the dorsal raphe (orexin/hypocretin, histamine and the noradrenaline systems) caused an inward current and increase in current noise in whole-cell patch-clamp recordings from these neurons in brain slices. The inward current induced by all three agonists was significantly reduced in extracellular solution containing reduced sodium (25.6 mm). In extracellular recordings, all three agonists increased the firing rate of serotonin neurons; the excitatory effects of histamine and orexin A were occluded by previous application of phenylephrine, suggesting that all three systems act via common effector mechanisms. The dose-response curve for orexin B suggested an effect mediated by type II (OX2) receptors. Single-cell PCR demonstrated the presence of both OX1 and OX2 receptors in tryptophan hydroxylase-positive neurons. The effects of histamine and the adrenoceptor agonist, phenylephrine, were blocked by antagonists of histamine H1 and alpha1 receptors, respectively. The inward current induced by orexin A and phenylephrine was not blocked by protein kinase inhibitors or by thapsigargin. Three types of current-voltage responses were induced by all three agonists but in no case did the current reverse at the potassium equilibrium potential. Instead, in many cases the orexin A-induced current reversed in calcium-free medium at a value (-23 mV) consistent with the activation of a mixed cation channel (with relative permeabilities for sodium and potassium of 0.43 and 1, respectively).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。