Saturation genome editing of BAP1 functionally classifies somatic and germline variants

BAP1 的饱和基因组编辑在功能上对体细胞和生殖细胞变异进行分类

阅读:6
作者:Andrew J Waters, Timothy Brendler-Spaeth #, Danielle Smith #, Victoria Offord, Hong Kee Tan, Yajie Zhao, Sofia Obolenski, Maartje Nielsen, Remco van Doorn, Jo-Ellen Murphy, Prashant Gupta, Charlie F Rowlands, Helen Hanson, Erwan Delage, Mark Thomas, Elizabeth J Radford, Sebastian S Gerety, Clare Tur

Abstract

Many variants that we inherit from our parents or acquire de novo or somatically are rare, limiting the precision with which we can associate them with disease. We performed exhaustive saturation genome editing (SGE) of BAP1, the disruption of which is linked to tumorigenesis and altered neurodevelopment. We experimentally characterized 18,108 unique variants, of which 6,196 were found to have abnormal functions, and then used these data to evaluate phenotypic associations in the UK Biobank. We also characterized variants in a large population-ascertained tumor collection, in cancer pedigrees and ClinVar, and explored the behavior of cancer-associated variants compared to that of variants linked to neurodevelopmental phenotypes. Our analyses demonstrated that disruptive germline BAP1 variants were significantly associated with higher circulating levels of the mitogen IGF-1, suggesting a possible pathological mechanism and therapeutic target. Furthermore, we built a variant classifier with >98% sensitivity and specificity and quantify evidence strengths to aid precision variant interpretation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。