Epithelial barrier dysfunction and cell migration induction via JNK/cofilin/actin by angubindin-1

上皮屏障功能障碍和通过 JNK/cofilin/actin 诱导细胞迁移,由 angubindin-1 引起

阅读:6
作者:Takumi Konno, Takayuki Kohno, Shin Kikuchi, Hiroshi Shimada, Seiro Satohisa, Tsuyoshi Saito, Masuo Kondoh, Takashi Kojima

Abstract

Angulin-1/LSR is a tricellular tight junction molecule, that plays an important role in maintaining the epithelial and endothelial barriers. The actin cytoskeleton at tricellular contacts also contributes to the maintenance of the epithelial barrier. Loss of angulin-1/LSR enhances the migration of various cancer cells. Angubindin-1 is a novel binder to angulin-1/LSR and angulin-3. It is a peptide generated from the angulin-1 binding site of Clostridium perfringens iota toxin, which affects the actin cytoskeleton and decreases the epithelial and endothelial barrier functions. However, its regulatory mechanisms are not well understood. To investigate the regulatory mechanisms of the epithelial barrier dysfunction and cell migration induction by angubindin-1, we used human endometrial cancer cell line Sawano, which has high LSR expression and the epithelial barrier function. Angubindin-1 decreased LSR expression and the epithelial barrier function and increased cell migration. It inhibited the recovery of the epithelial barrier function in a Ca-switch model. At tricellular contacts, sinking of the membrane and an increase of actin fibers near the junctions were caused by angubindin-1. It dynamically changed F-actin from lines to dot-like structures at tricellular contacts. Angubindin-1 transiently increased the phosphorylation of cofilin and JNK, which are involved in the regulation of the intracellular actin cytoskeleton. Furthermore, knockdown of JNK and the JNK inhibitor SP600125 prevented the decrease of the epithelial barrier function and the increase of cell migration induced by angubindin-1. These findings suggest that angubindin-1 might reversibly regulate the epithelial barrier and cell migration at tricellular contacts via JNK/cofilin/actin cytoskeleton dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。