Lactococcus lactis HkyuLL 10 suppresses colorectal tumourigenesis and restores gut microbiota through its generated alpha-mannosidase

乳酸乳球菌 HkyuLL 10 通过其产生的 α-甘露糖苷酶抑制结直肠肿瘤发生并恢复肠道菌群

阅读:11
作者:Anthony Chin Yang Su, Xiao Ding, Harry Cheuk Hay Lau, Xing Kang, Qing Li, Xueliang Wang, Yali Liu, Lanping Jiang, Yinghong Lu, Weixin Liu, Yanqiang Ding, Alvin Ho-Kwan Cheung, Ka Fai To, Jun Yu

Conclusion

HkyuLL 10 suppresses CRC tumourigenesis in mice through restoring gut microbiota and secreting functional protein α-mannosidase. HkyuLL 10 administration may serve as a prophylactic measure against CRC.

Objective

Probiotic Lactococcus lactis is known to confer health benefits to humans. Here, we aimed to investigate the role of L. lactis in colorectal cancer (CRC). Design: L. lactis abundance was evaluated in patients with CRC (n=489) and healthy individuals (n=536). L. lactis was isolated from healthy human stools with verification by whole genome sequencing. The effect of L. lactis on CRC tumourigenesis was assessed in transgenic Apc Min/+ mice and carcinogen-induced CRC mice. Faecal microbiota was profiled by metagenomic sequencing. Candidate proteins were characterised by nano liquid chromatography-mass spectrometry. Biological function of L. lactis conditioned medium (HkyuLL 10-CM) and functional protein was studied in human CRC cells, patient-derived organoids and xenograft mice.

Results

Faecal L. lactis was depleted in patients with CRC. A new L. lactis strain was isolated from human stools and nomenclated as HkyuLL 10. HkyuLL 10 supplementation suppressed CRC tumourigenesis in Apc Min/+ mice, and this tumour-suppressing effect was confirmed in mice with carcinogen-induced CRC. Microbiota profiling revealed probiotic enrichment including Lactobacillus johnsonii in HkyuLL 10-treated mice. HkyuLL 10-CM significantly abrogated the growth of human CRC cells and patient-derived organoids. Such protective effect was attributed to HkyuLL 10-secreted proteins, and we identified that α-mannosidase was the functional protein. The antitumourigenic effect of α-mannosidase was demonstrated in human CRC cells and organoids, and its supplementation significantly reduced tumour growth in xenograft mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。