Human Genomic Safe Harbors and the Suicide Gene-Based Safeguard System for iPSC-Based Cell Therapy

人类基因组安全港和基于自杀基因的 iPSC 细胞治疗保障系统

阅读:7
作者:Yasuyoshi Kimura, Tomoko Shofuda, Yuichiro Higuchi, Ippei Nagamori, Masaaki Oda, Masayuki Nakamori, Masafumi Onodera, Daisuke Kanematsu, Atsuyo Yamamoto, Asako Katsuma, Hiroshi Suemizu, Toru Nakano, Yonehiro Kanemura, Hideki Mochizuki

Abstract

The use of human induced pluripotent stem cells (hiPSCs) and recent advances in cell engineering have opened new prospects for cell-based therapy. However, there are concerns that must be addressed prior to their broad clinical applications and a major concern is tumorigenicity. Suicide gene approaches could eliminate wayward tumor-initiating cells even after cell transplantation, but their efficacy remains controversial. Another concern is the safety of genome editing. Our knowledge of human genomic safe harbors (GSHs) is still insufficient, making it difficult to predict the influence of gene integration on nearby genes. Here, we showed the topological architecture of human GSH candidates, AAVS1, CCR5, human ROSA26, and an extragenic GSH locus on chromosome 1 (Chr1-eGSH). Chr1-eGSH permitted robust transgene expression, but a 2 Mb-distant gene within the same topologically associated domain showed aberrant expression. Although knockin iPSCs carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were sufficiently sensitive to ganciclovir in vitro, the resulting teratomas showed varying degrees of resistance to the drug in vivo. Our findings suggest that the Chr1-eGSH is not suitable for therapeutic gene integration and highlight that topological analysis could facilitate exploration of human GSHs for regenerative medicine applications. Our data indicate that the HSV-TK/ganciclovir suicide gene approach alone may be not an adequate safeguard against the risk of teratoma, and suggest that the combination of several distinct approaches could reduce the risks associated with cell therapy. Stem Cells Translational Medicine 2019;8:627&638.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。