Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk

基于深度学习序列的从头预测变异对表达和疾病风险的影响

阅读:6
作者:Jian Zhou, Chandra L Theesfeld, Kevin Yao, Kathleen M Chen, Aaron K Wong, Olga G Troyanskaya

Abstract

Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning-based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II-transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。