Stromal Cell-Derived Factor-1 α Alleviates Calcium-Sensing Receptor Activation-Mediated Ischemia/Reperfusion Injury by Inhibiting Caspase-3/Caspase-9-Induced Cell Apoptosis in Rat Free Flaps

基质细胞衍生因子-1α通过抑制大鼠游离皮瓣中Caspase-3/Caspase-9诱导的细胞凋亡减轻钙敏感受体活化介导的缺血/再灌注损伤

阅读:14
作者:Li Song, Li-Na Gao, Jun Wang, Swosti Thapa, Yong Li, Xiao-Bo Zhong, Hong-Wei Zhao, Xue-Rong Xiang, Fu-Gui Zhang, Ping Ji

Abstract

Surgical flaps are frequently affected by ischemia/reperfusion (I/R) injury. Calcium-sensing receptor (CaSR) and stromal cell-derived factor-1α (SDF-1α) are closely associated with myocardial I/R injury. This study was performed to evaluate the feasibility of applying SDF-1α to counteract CaSR activation-mediated I/R injury in ischemic free flaps. Free flaps that underwent ischemia for 3 h were equally randomized into five groups: CaCl2, NPS2143 + CaCl2, SDF-1α + CaCl2, AMD3100 + SDF-1α + CaCl2, and normal saline. The free flaps were harvested to evaluate flap necrosis and neovascularization after 2 h or 7 d of reperfusion. p-CaSR/CaSR was extensively expressed in vascular endothelial cells of free flaps after I/R injury, and activation of the SDF-1α/CXCR4 axis and NPS2143 could reduce the expression of cleaved caspase-3, caspase-9, FAS, Cyt-c, and Bax and increase Bcl-2 expression; the opposite was true after CaSR activation. Interestingly, initiation of the SDF-1α/CXCR4 axis might abrogate CaSR activation-induced I/R injury through enhancement of microvessel density. In conclusion, CaSR might become a novel therapeutic target of free flaps affected by I/R injury. Activation of the SDF-1α/CXCR4 axis and NPS2143 could counteract CaSR activation-mediated I/R injury and promote free flap survival through inhibition of caspase-3/caspase-9-related cell apoptosis and enhancement of neovascularization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。