Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry

通过 MALDI 成像质谱法研究人类晶状体 α-晶状体蛋白产品空间分布随年龄变化

阅读:10
作者:Angus C Grey, Kevin L Schey

Conclusions

A method has been developed to spatially map the age-related changes of human lens alpha-crystallin by MALDI imaging mass spectrometry including a novel L52F alphaA-crystallin mutation in a cataractous lens. Application of this spatially resolved proteomic technique to lens biology enhances the understanding of alpha-crystallin protein processing in aging and diseased human lenses.

Methods

Frozen human lenses were cryosectioned equatorially and axially into 20-mum-thick sections, and the sections were mounted onto conductive glass slides by methanol soft-landing. An ethanol washing procedure facilitated uniform matrix crystal formation by a two-step matrix deposition procedure to produce high-quality mass spectral data. Molecular images of modified and unmodified alpha-crystallin subunits were obtained from mass spectral data acquired in 100-mum steps across normal and cataractous lens sections. Proteins extracted from the lens sections were digested with endoproteinase Glu-C and subjected to mass spectrometric analysis for identification of modifications.

Purpose

To develop a protocol for MALDI (matrix-assisted laser desorption ionization) imaging mass spectrometry for mapping the distributions of alpha-crystallin and its modified forms in human lens tissue as a function of lens age and cataract.

Results

Intact alpha-crystallin signals were detected primarily in the outer cortical fiber cells in lenses up to 29 years of age. Multiple truncation products were observed for alpha-crystallin that increased in abundance, both with distance into the lens and with lens age. Phosphorylated alphaB-crystallin forms were most abundant in the cortical region of older lenses. In axial sections, no significant anterior-posterior pole variation was observed. A previously unreported alphaA-crystallin mutation was detected in an age-matched cataractous human lens. Conclusions: A method has been developed to spatially map the age-related changes of human lens alpha-crystallin by MALDI imaging mass spectrometry including a novel L52F alphaA-crystallin mutation in a cataractous lens. Application of this spatially resolved proteomic technique to lens biology enhances the understanding of alpha-crystallin protein processing in aging and diseased human lenses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。