Antagonism between H3K27me3 and genome-lamina association drives atypical spatial genome organization in the totipotent embryo

H3K27me3 与基因组-层蛋白关联之间的拮抗作用导致全能胚胎中基因组空间组织不典型

阅读:5
作者:Isabel Guerreiro #, Franka J Rang #, Yumiko K Kawamura, Carla Kroon-Veenboer, Jeroen Korving, Femke C Groenveld, Ramada E van Beek, Silke J A Lochs, Ellen Boele, Antoine H M F Peters, Jop Kind0

Abstract

In mammals, early embryonic development exhibits highly unusual spatial positioning of genomic regions at the nuclear lamina, but the mechanisms underpinning this atypical genome organization remain elusive. Here, we generated single-cell profiles of lamina-associated domains (LADs) coupled with transcriptomics, which revealed a striking overlap between preimplantation-specific LAD dissociation and noncanonical broad domains of H3K27me3. Loss of H3K27me3 resulted in a restoration of canonical LAD profiles, suggesting an antagonistic relationship between lamina association and H3K27me3. Tethering of H3K27me3 to the nuclear periphery showed that the resultant relocalization is partially dependent on the underlying DNA sequence. Collectively, our results suggest that the atypical organization of LADs in early developmental stages is the result of a tug-of-war between intrinsic affinity for the nuclear lamina and H3K27me3, constrained by the available space at the nuclear periphery. This study provides detailed insight into the molecular mechanisms regulating nuclear organization during early mammalian development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。