Hepatoprotective Activity of Leptadenia hastata (Asclepiadaceae) on Acetaminophen-Induced Toxicity in Mice: In Vivo Study and Characterization of Bioactive Compounds through Molecular Docking Approaches

萝藦科植物 Leptadenia hastata 对小鼠乙酰氨基酚诱导毒性的保肝活性:通过分子对接方法进行体内研究和生物活性化合物的表征

阅读:8
作者:Borris R T Galani, Brice A Owona, Dieudonné P D Chuisseu, Esaïe Machewere, Claude B N Ngantchouko, Paul F Moundipa

Conclusion

Based on these results, L. hastata could be considered a source of promising hepatoprotective compounds with antioxidant and anti-inflammatory properties.

Methods

Various aqueous extracts were prepared from this plant and preadministered per os to albino mice 3 h before APAP administration, once daily for one week. Animals from the normal group were given only distilled water while those from negative control received only APAP 250 mg/kg. After treatment, mice were sacrificed, the liver was collected for histopathology analysis, and different biochemical markers (alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNFα)) were measured. The content of the active extract was analyzed by HPLC/UV. Molecular docking was conducted using iGEMDOCK software, and the drug-likeness and pharmacokinetic profiles were evaluated using Swiss ADME.

Results

APAP administration significantly increased (p < 0.001) ALT in liver homogenates when compared to normal controls whereas the stem decoction at 250 mg/kg significantly (p < 0.001) reduced this activity to a normal value comparable to silymarin 50 mg/kg which is better than leaf and root extracts. Moreover, the stem decoction also significantly reduced the MDA levels (p < 0.05) and increased those of GSH, SOD, and CAT (p < 0.001) at doses of 250 and 500 mg/kg compared to the negative control. A significant (p < 0.001) decrease of TNFα levels and leukocyte infiltration was observed following treatment with this extract. The HPLC/UV analysis of the decoction revealed the presence of dihydroxycoumarin, quinine, and scopoletin with the following retention times: 2.6, 5.1, and 7.01 min, respectively. In silico studies showed that quinine and dihydroxycoumarin had great potentials to be orally administered drugs and possessed strong binding affinities with TNFα, TNF receptor, cyclooxygenase-2, iNOS, cytochrome P450 2E1, and GSH reductase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。