Mild endothelial dysfunction in Sirt3 knockout mice fed a high-cholesterol diet: protective role of a novel C/EBP-β-dependent feedback regulation of SOD2

高胆固醇饮食喂养的 Sirt3 基因敲除小鼠出现轻度内皮功能障碍:新型 C/EBP-β 依赖性 SOD2 反馈调节的保护作用

阅读:12
作者:Stephan Winnik, Daniel S Gaul, Giovanni Siciliani, Christine Lohmann, Lisa Pasterk, Natacha Calatayud, Julien Weber, Urs Eriksson, Johan Auwerx, Lambertus J van Tits, Thomas F Lüscher, Christian M Matter1

Abstract

Sirtuin 3 (Sirt3) is an NAD(+)-dependent mitochondrial deacetylase associated with superoxide dismutase 2 (SOD2)-mediated protection from oxidative stress. We have reported accelerated weight gain and impaired metabolic flexibility in atherosclerotic Sirt3 (-/-) mice. Oxidative stress is a hallmark of endothelial dysfunction. Yet, the role of Sirt3 in this context remains unknown. Thus, we aimed to unravel the effects of endogenous Sirt3 on endothelial function and oxidative stress. Knockdown of Sirt3 in human aortic endothelial cells (HAEC) increased intracellular mitochondrial superoxide accumulation, as assessed by electron spin resonance spectroscopy and fluorescence imaging. Endothelium-dependent relaxation of aortic rings from Sirt3 (-/-) mice exposed to a normal diet did not differ from wild-type controls. However, following 12 weeks of high-cholesterol diet and increasing oxidative stress, endothelial function of Sirt3 (-/-) mice was mildly impaired compared with wild-type controls. Relaxation was restored upon enhanced superoxide scavenging using pegylated superoxide dismutase. Knockdown of Sirt3 in cultured HAEC diminished SOD2 specific activity, which was compensated for by a CCAAT/enhancer binding protein beta (C/EBP-β)-dependent transcriptional induction of SOD2. Abrogation of this feedback regulation by simultaneous knockdown of C/EBP-β and Sirt3 exacerbated mitochondrial superoxide accumulation and culminated into endothelial cell death upon prolonged culture. Taken together, Sirt3 deficiency induces a mild, superoxide-dependent endothelial dysfunction in mice fed a high-cholesterol diet. In cultured endothelial cells, a novel C/EBP-β-dependent rescue mechanism maintains net SOD2 activity upon transient knockdown of Sirt3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。