Evolution of pH-sensitive transcription termination in Escherichia coli during adaptation to repeated long-term starvation

大肠杆菌在适应长期反复饥饿过程中pH敏感转录终止的演变

阅读:10
作者:Sarah B Worthan, Robert D P McCarthy, Mildred Delaleau, Ryan Stikeleather, Benjamin P Bratton, Marc Boudvillain, Megan G Behringer

Abstract

Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in Escherichia coli populations experimentally evolved under repeated long-term starvation conditions, during which the accumulation of metabolic waste followed by transfer into fresh media results in drastic environmental pH fluctuations associated with feast and famine. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers plasticity via an alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species that regularly experience neutral to alkaline pH fluctuations in their environments. Our results suggest that Arg to His substitutions in Rho may serve to rapidly coordinate complex physiological responses through pH sensing and shed light on how cellular populations use environmental cues to coordinate rapid responses to complex, fluctuating environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。