Air-Coupled Photoacoustic Detection of Airborne Particulates

空气耦合光声检测空气中的颗粒物

阅读:7
作者:Eric M Strohm, Krishnan Sathiyamoorthy, Taehoon Bok, Omar Nusrat, Michael C Kolios

Abstract

In this study, we present a novel method to detect airborne particulates using air-coupled photoacoustics, with a goal toward detecting viral content in respiratory droplets. The peak photoacoustic frequency emitted from micrometer-sized particulates is over 1000 MHz, but at this frequency, the signals are highly attenuated in air. Measurements were taken using a thin planar absorber and ultrasound transducers with peak sensitivity between 50 kHz and 2000 kHz and a 532 nm pulsed laser to determine the optimum detection frequency. 350 kHz to 500 kHz provided the highest amplitude signal while minimizing attenuation in air. To simulate the expulsion of respiratory droplets, an atomizer device was used to spray droplets into open air through a pulsed laser. Droplets were composed of water, water with acridine orange dye, and water with gold nanoparticles. The dye and nanoparticles were chosen due to their similarity in the UV absorption peaks when compared to RNA. Using a 260 nm laser, the average photoacoustic signal from water was the highest, and then the signal decreased with dye or nanoparticles. Increasing absorber concentrations within their respective solutions resulted in a decreasing photoacoustic signal, which is opposite to our expectations. Monte Carlo simulations demonstrated that depending on the droplet dimensions, water droplets focus photons to create a localized fluence elevation. Absorbers within the droplet can inhibit photon travel through the droplet, decreasing the fluence. Photoacoustic signals are created through optical absorption within the droplet, potentially amplified with the localized fluence increase through the droplet focusing effect, with a trade-off in signal amplitude depending on the absorber concentration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。