Intra-amygdaloid injection of kainic acid in rats with genetic absence epilepsy: the relationship of typical absence epilepsy and temporal lobe epilepsy

杏仁核内注射海人酸治疗遗传性失神性癫痫大鼠:典型失神性癫痫与颞叶癫痫的关系

阅读:8
作者:Ayten Azizova Gurbanova, Rezzan Gülhan Aker, Serap Sirvanci, Tamer Demiralp, Filiz Yilmaz Onat

Abstract

We showed previously that genetic absence epilepsy rats from Strasbourg (GAERS) resist secondary generalization of focal limbic seizures after electrical kindling. We now investigate the effect of intra-amygdaloid injection of kainic acid, as another model of temporal lobe epilepsy, focusing on epileptogenesis, spike-and-wave discharges (SWDs), and the transition from basal to SWD states in GAERS. The EEG was recorded from the hippocampus and cortex of adult GAERS and Wistar rats before kainic acid injections into the basolateral amygdala and for 3 months thereafter. EEG and video recordings monitored SWDs and convulsive seizures. We analyzed spectral changes of the EEG during kainic acid-induced status epilepticus, SWDs, for 10 s before (silent period) and for 2 s before (transition period) SWDs. After the injection of kainic acid, all animals experienced convulsive seizures for at least 3 h. The first convulsive seizure was significantly delayed in GAERS compared with Wistar rats. SWDs and increases in power of the delta, alpha, and beta frequency ranges during the transition period disappeared after the kainic acid injection for 1-3 d and gradually reappeared. Power increases in the delta and alpha ranges were significantly correlated with the number of SWDs, in the beta and alpha ranges with their mean duration. Neo-Timm's staining at the end of experiments demonstrated that mossy fiber sprouting in GAERS is less pronounced than in Wistar rats. Our findings show that mechanisms underlying absence epilepsy and temporal lobe epilepsy interact with each other, although a site of this interaction remains to be defined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。