Embodimetrics: A Principal Component Analysis Study of the Combined Assessment of Cardiac, Cognitive and Mobility Parameters

身体测量学:心脏、认知和活动能力参数综合评估的主成分分析研究

阅读:7
作者:Andrea Chellini, Katia Salmaso, Michele Di Domenico, Nicola Gerbi, Luigi Grillo, Marco Donati, Marco Iosa

Abstract

There is a growing body of literature investigating the relationship between the frequency domain analysis of heart rate variability (HRV) and cognitive Stroop task performance. We proposed a combined assessment integrating trunk mobility in 72 healthy women to investigate the relationship between cognitive, cardiac, and motor variables using principal component analysis (PCA). Additionally, we assessed changes in the relationships among these variables after a two-month intervention aimed at improving the perception-action link. At baseline, PCA correctly identified three components: one related to cardiac variables, one to trunk motion, and one to Stroop task performance. After the intervention, only two components were found, with trunk symmetry and range of motion, accuracy, time to complete the Stroop task, and low-frequency heart rate variability aggregated into a single component using PCA. Artificial neural network analysis confirmed the effects of both HRV and motor behavior on cognitive Stroop task performance. This analysis suggested that this protocol was effective in investigating embodied cognition, and we defined this approach as "embodimetrics".

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。