Characterization of the role of microtubule-associated protein 1B in metabotropic glutamate receptor-mediated endocytosis of AMPA receptors in hippocampus

微管相关蛋白 1B 在海马代谢型谷氨酸受体介导的 AMPA 受体内吞中的作用的表征

阅读:16
作者:Genoveva Davidkova, Reed C Carroll

Abstract

The mGluR-dependent endocytosis of AMPA receptors (AMPARs) in the CA1 region is protein synthesis dependent. However, why this form of trafficking, and not that mediated by NMDA receptor activation, is dependent on protein translation is unclear. Here we have studied the contribution of the cytoskeletal microtubule-associated protein 1B (MAP1B) to the pathway-specific internalization of AMPARs. Treatments of cultured neurons with 3,4-dihydroxyphenylglycol (DHPG) or NMDA, both of which drive AMPAR endocytosis, caused a translation-dependent increase in the dendritic levels of MAP1B protein. Although interfering with protein synthesis using short interfering RNA (siRNA) to eEF2 kinase (eukaryotic elongation factor 2 kinase) blocked the dendritic MAP1B increase by both pathways, it selectively blocked the DHPG- and not the NMDA-induced AMPAR endocytosis. In support of MAP1B synthesis contributing to metabotropic glutamate receptor (mGluR)-mediated AMPAR endocytosis, siRNA against MAP1B in CA1 cultured neurons specifically blocked the DHPG-induced AMPAR internalization. Previous studies suggest a direct interaction between MAP1B and the AMPAR-binding protein GRIP1. Biochemical studies establish that MAP1B associates with GRIP1 and forms a complex with GluR2 in vivo in rat hippocampus. Furthermore, the interaction between MAP1B and GRIP1 increased significantly in acute slices after treatment with DHPG and not NMDA. Together, these findings suggest that MAP1B plays a selective role in the DHPG-induced endocytosis of AMPARs, perhaps through its interaction with GRIP1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。