Conclusions
These results identify PTEN loss as a clinically relevant genetic alteration driving the molecular and histopathologic heterogeneity of neuroendocrine lung tumors initiated by Rb1/Trp53 mutations.
Methods
New genetically engineered mouse models are used to test the effects of PTEN loss on the development of lung tumors initiated by Rb1 and Trp53 tumor suppressor gene deletion.
Results
Complete PTEN loss drives more rapid tumor development with a greater diversity of tumor histopathology ranging from adenocarcinoma to SCLC. PTEN loss also drives transcriptional heterogeneity as marked lineage plasticity is observed within histopathologic subtypes. Spatial profiling indicates transcriptional heterogeneity exists both within and among tumor foci with transcriptional patterns correlating with spatial position, implying that the growth environment influences gene expression. Conclusions: These results identify PTEN loss as a clinically relevant genetic alteration driving the molecular and histopathologic heterogeneity of neuroendocrine lung tumors initiated by Rb1/Trp53 mutations.