Differential regulation of action potential- and metabotropic glutamate receptor-induced Ca2+ signals by inositol 1,4,5-trisphosphate in dopaminergic neurons

肌醇 1,4,5-三磷酸对多巴胺能神经元中动作电位和代谢型谷氨酸受体诱导的 Ca2+ 信号的差异调节

阅读:13
作者:Guohong Cui, Brian E Bernier, Mark T Harnett, Hitoshi Morikawa

Abstract

Ca2+ signals associated with action potentials (APs) and metabotropic glutamate receptor (mGluR) activation exert distinct influences on neuronal activity and synaptic plasticity. However, it is not clear how these two types of Ca2+ signals are differentially regulated by neurotransmitter inputs in a single neuron. We investigated this issue in dopaminergic neurons of the ventral midbrain using brain slices. Intracellular Ca2+ was assessed by measuring Ca2+-sensitive K+ currents or imaging the fluorescence of Ca2+ indicator dyes. Tonic activation of metabotropic neurotransmitter receptors (mGluRs, alpha1 adrenergic receptors, and muscarinic acetylcholine receptors), attained by superfusion of agonists or weak, sustained (approximately 1 s) synaptic stimulation, augmented AP-induced Ca2+ transients. In contrast, Ca2+ signals elicited by strong, transient (50-200 ms) activation of mGluRs with aspartate iontophoresis were suppressed by superfusion of agonists. These opposing effects on Ca2+ signals were both mediated by an increase in intracellular inositol 1,4,5-trisphosphate (IP3) levels, because they were blocked by heparin, an IP3 receptor antagonist, and reproduced by photolytic application of IP3. Evoking APs repetitively at low frequency (2 Hz) caused inactivation of IP3 receptors and abolished IP3 facilitation of single AP-induced Ca2+ signals, whereas facilitation of Ca2+ signals triggered by bursts of APs (five at 20 Hz) was attenuated by less than half. We further obtained evidence suggesting that the psychostimulant amphetamine may augment burst-induced Ca2+ signals via both depression of basal firing and production of IP3. We propose that intracellular IP3 tone provides a mechanism to selectively amplify burst-induced Ca2+ signals in dopaminergic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。