Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia

P2Y受体抑制大鼠背根神经节神经元N型电压激活钙通道是ADP诱导镇痛的可能机制

阅读:9
作者:Zoltan Gerevich, Sebestyen J Borvendeg, Wolfgang Schröder, Heike Franke, Kerstin Wirkner, Wolfgang Nörenberg, Susanna Fürst, Clemens Gillen, Peter Illes

Abstract

Patch-clamp recordings from small-diameter rat dorsal root ganglion (DRG) neurons maintained in culture demonstrated preferential inhibition by ATP of high-voltage-activated, but not low-voltage-activated, Ca2+ currents (I(Ca)). The rank order of agonist potency was UTP > ADP > ATP. ATP depressed the omega-conotoxin GVIA-sensitive N-type current only. Pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate tetraammonium, two P2Y1 receptor antagonists, almost abolished the ATP-induced inhibition. Both patch-clamp recordings and immunocytochemistry coupled with confocal laser microscopy indicated a colocalization of functional P2X3 and P2Y1 receptors on the same DRG neurons. Because the effect of ATP was inhibited by intracellular guanosine 5'-O-(2-thiodiphosphate) or by applying a strongly depolarizing prepulse, P2Y1 receptors appear to block I(Ca) by a pathway involving the betagamma subunit of a G(q/11) protein. Less efficient buffering of the intracellular Ca2+ concentration ([Ca2+]i) by reducing the intrapipette EGTA failed to interfere with the ATP effect. Fura-2 microfluorimetry suggested that ATP raised [Ca2+]i by a Galpha-mediated release from intracellular pools and simultaneously depressed the high external potassium concentration-induced increase of [Ca2+]i by inhibiting I(Ca) via Gbetagamma. Adenosine 5'-O-(2-thiodiphosphate) inhibited dorsal root-evoked polysynaptic population EPSPs in the hemisected rat spinal cord and prolonged the nociceptive threshold on intrathecal application in the tail-flick assay. These effects were not antagonized by PPADS. Hence, P2Y receptor activation by ADP, which is generated by enzymatic degradation of ATP, may decrease the release of glutamate from DRG terminals in the spinal cord and thereby partly counterbalance the algogenic effect of ATP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。