A Critical Period in Purkinje Cell Development Is Mediated by Local Estradiol Synthesis, Disrupted by Inflammation, and Has Enduring Consequences Only for Males

浦肯野细胞发育的关键时期由局部雌二醇合成介导,因炎症而中断,且仅对男性产生持久影响

阅读:7
作者:Jessica F Hoffman, Christopher L Wright, Margaret M McCarthy

Abstract

Identifying and understanding critical periods in brain development is essential to decoding the long-term impact of widespread, poorly defined, and frequently occurring insults such as inflammation. Using the laboratory rat Rattus norvegicus, we have discovered a narrowly constrained critical period in Purkinje neuron development subject to dysregulation by inflammation. The onset and offset of heightened vulnerability are attributed to a tightly orchestrated gene expression profile present only during the second postnatal week and not the first or third weeks. Genes expressed during this time code for enzymes and receptors which are critical not only for prostaglandin production and activity but also for estradiol production via the aromatase enzyme and estradiol action via the α isoform of the estrogen receptor. The two synthetic pathways are connected by prostaglandin E2 (PGE2) activation of the aromatase enzyme, as we reported previously (Dean et al., 2012b) and confirm here. Dysregulation of the PGE2-estradiol pathway during the second week by treatment with PGE2 or lipopolysaccharides produces enduring consequences as a result of reduced growth of Purkinje dendritic trees and impaired juvenile social play behavior, but only in males. The deleterious consequences of inflammation locally in the cerebellum are prevented by peripheral treatment with the cyclooxygenase inhibitor nimesulide or the aromatase inhibitor formestane. These findings highlight a novel regulatory pathway that creates a critical period in brain development vulnerable to dysregulation by inflammation. Significance statement: The cerebellum is increasingly appreciated for its role in social, emotional, and cognitive behaviors. It is consistently and severely affected in neuropsychiatric disorders originating during development, such as autism spectrum disorder and schizophrenia. We have identified a critical period in rat development during the second week of life that is dysregulated by inflammatory insults. An intrinsic program of gene expression determines the critical period. The enduring consequences of inflammation during the second postnatal week are stunted dendrites of the cerebellum's principal neurons, Purkinje cells, and impairments in later social behavior. These changes are not evident if inflammation occurs during the first or third week, highlighting the importance of fine-grained analyses of developmental processes and the factors that influence them.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。