Modeling the Impact of Extracellular Vesicle Cargoes in the Diagnosis of Coronary Artery Disease

模拟细胞外囊泡货物对冠状动脉疾病诊断的影响

阅读:5
作者:Peter McGranaghan, Éva Pallinger, Nóra Fekete, Pál Maurovich-Horvát, Zsófia Drobni, Béla Merkely, Luigi Menna, Edit I Buzás, Hargita Hegyesi

Conclusions

Based on our results, the circulating EV profile can be used as a supportive biomarker, along with the conventional laboratory markers of CAD, and it enables a more sensitive, non-invasive diagnostic analysis of CAD.

Methods

Patients were categorized based on coronary CT angiography. Patients with a Segment Involvement Score > 5 were identified as CAD patients. Individuals with a Segment Involvement Score < 5 were considered control subjects. The characterization of EVs and analysis of the plasma concentration of growth differentiation factor-15 were performed using multicolor or bead-based flow cytometry. The plasma protein levels of glycogen phosphorylase, muscle form, clusterin, and carboxypeptidase N subunit 1 were determined using an enzyme-linked immunosorbent assay. Multiple logistic regression was used to determine the association of the biomarkers with the CAD outcome after accounting for established risk factors. The analysis was built in three steps: first, we included the basic clinical and laboratory variables (Model 1), then we integrated the plasma protein values (Model 2), and finally, we complemented it with the circulating EV pattern (Model 3). To assess the discrimination value of the models, an area under (AUC) the receiver operating curve was calculated and compared across the three models.

Results

The area under the curve (AUC) values were 0.68, 0.77, and 0.84 in Models 1, 2, and 3, respectively. The variables with the greatest impact on the AUC values were hemoglobin (0.2 (0.16-0.26)) in Model 1, carboxypeptidase N subunit 1 (0.12 (0.09-0.14)) in Model 2, and circulating CD41+/CD61+ EVs (0.31 (0.15-0.5)) in Model 3. A correlation analysis showed a significant impact of circulating CD41+/CD61+ platelet-derived EVs (p = 0.03, r = -0.4176) in Model 3. Conclusions: Based on our results, the circulating EV profile can be used as a supportive biomarker, along with the conventional laboratory markers of CAD, and it enables a more sensitive, non-invasive diagnostic analysis of CAD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。