Nickel-Induced Reduced Graphene Oxide Nanoribbon Formation on Highly Ordered Pyrolytic Graphite for Electronic and Magnetic Applications

镍诱导还原氧化石墨烯纳米带在高度有序的热解石墨上形成,用于电子和磁性应用

阅读:19
作者:Maximina Luis-Sunga, Alejandro González-Orive, Juan Carlos Calderón, Ilaria Gamba, Airán Ródenas, Teresa de Los Arcos, Alberto Hernández-Creus, Guido Grundmeier, Elena Pastor, Gonzalo García

Abstract

The development of nanoribbon-like structures is an effective strategy to harness the potential benefits of graphenic materials due to their excellent electrical properties, advantageous edge sites, rapid electron transport, and large specific area. Herein, parallel and connected magnetic nanostructured nanoribbons are obtained through the synthesis of reduced graphene oxide (rGO) using NiCl2 as a precursor with potential applications in nascent electronic and magnetic devices. Several analytical techniques have been used for the thorough characterization of the modified surfaces. Atomic force microscopy (AFM) shows the characteristic topographical features of the nanoribbons. While X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy provided information on the chemical state of Ni and graphene-like structures, magnetic force microscopy (MFM) and scanning Kelvin probe microscopy (SKPFM) confirmed the preferential concentration of Ni onto rGO nanoribbons. These results indicate that the synthesized material shows 1D ordering of nickel nanoparticles (NiNPs)-decorating tiny rGO flakes into thin threads and the subsequent 2D arrangement of the latter into parallel ribbons following the topography of the HOPG basal plane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。