Posttraumatic stress disorder-like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses

创伤后应激障碍样诱导会升高 β-淀粉样蛋白水平,从而直接激活促皮质素释放因子神经元,加剧应激反应

阅读:4
作者:Nicholas J Justice, Longwen Huang, Jin-Bin Tian, Allysa Cole, Melissa Pruski, Albert J Hunt Jr, Rene Flores, Michael X Zhu, Benjamin R Arenkiel, Hui Zheng

Abstract

Recent studies have found that those who suffer from posttraumatic stress disorder (PTSD) are more likely to experience dementia as they age, most often Alzheimer's disease (AD). These findings suggest that the symptoms of PTSD might have an exacerbating effect on AD progression. AD and PTSD might also share common susceptibility factors such that those who experience trauma-induced disease were already more likely to succumb to dementia with age. Here, we explored these two hypotheses using a mouse model of PTSD in wild-type and AD model animals. We found that expression of human familial AD mutations in amyloid precursor protein and presenilin 1 leads to sensitivity to trauma-induced PTSD-like changes in behavioral and endocrine stress responses. PTSD-like induction, in turn, chronically elevates levels of CSF β-amyloid (Aβ), exacerbating ongoing AD pathogenesis. We show that PTSD-like induction and Aβ elevation are dependent on corticotropin-releasing factor (CRF) receptor 1 signaling and an intact hypothalamic-pituitary-adrenal axis. Furthermore, we show that Aβ species can hyperexcite CRF neurons, providing a mechanism by which Aβ influences stress-related symptoms and PTSD-like phenotypes. Consistent with Aβ causing excitability of the stress circuitry, we attenuate PTSD-like phenotypes in vivo by lowering Aβ levels during PTSD-like trauma exposure. Together, these data demonstrate that exposure to PTSD-like trauma can drive AD pathogenesis, which directly perturbs CRF signaling, thereby enhancing chronic PTSD symptoms while increasing risk for AD-related dementia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。