In Situ Study of the Wet Chemical Etching of SiO2 and Nanoparticle@SiO2 Core-Shell Nanospheres

SiO2 及纳米粒子@SiO2 核壳纳米球湿化学蚀刻的原位研究

阅读:4
作者:Albert Grau-Carbonell, Sina Sadighikia, Tom A J Welling, Relinde J A van Dijk-Moes, Ramakrishna Kotni, Maarten Bransen, Alfons van Blaaderen, Marijn A van Huis

Abstract

The recent development of liquid cell (scanning) transmission electron microscopy (LC-(S)TEM) has opened the unique possibility of studying the chemical behavior of nanomaterials down to the nanoscale in a liquid environment. Here, we show that the chemically induced etching of three different types of silica-based silica nanoparticles can be reliably studied at the single particle level using LC-(S)TEM with a negligible effect of the electron beam, and we demonstrate this method by successfully monitoring the formation of silica-based heterogeneous yolk-shell nanostructures. By scrutinizing the influence of electron beam irradiation, we show that the cumulative electron dose on the imaging area plays a crucial role in the observed damage and needs to be considered during experimental design. Monte-Carlo simulations of the electron trajectories during LC-(S)TEM experiments allowed us to relate the cumulative electron dose to the deposited energy on the particles, which was found to significantly alter the silica network under imaging conditions of nanoparticles. We used these optimized LC-(S)TEM imaging conditions to systematically characterize the wet etching of silica and metal(oxide)-silica core-shell nanoparticles with cores of gold and iron oxide, which are representative of many other core-silica-shell systems. The LC-(S)TEM method reliably reproduced the etching patterns of Stöber, water-in-oil reverse microemulsion (WORM), and amino acid-catalyzed silica particles that were reported before in the literature. Furthermore, we directly visualized the formation of yolk-shell structures from the wet etching of Au@Stöber silica and Fe3O4@WORM silica core-shell nanospheres.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。