Slow-release inoculation allows sustained biodegradation of gamma-hexachlorocyclohexane

缓释接种可使γ-六氯环己烷持续生物降解

阅读:6
作者:Birgit Mertens, Nico Boon, Willy Verstraete

Abstract

This study investigated the feasibility of a slow-release inoculation approach as a bioaugmentation strategy for the degradation of lindane (gamma-hexachlorocyclohexane [gamma-HCH]). Slow-release inoculation of Sphingomonas sp. gamma 1-7 was established in both liquid and soil slurry microcosms using open-ended silicone tubes in which the bacteria are encapsulated in a protective nutrient-rich matrix. The capacity of the encapsulated cells to degrade lindane under aerobic conditions was evaluated in comparison with inoculation of free-living cells. Encapsulation of cells in tubes caused the removal of lindane by adsorption to the silicone tubes but also ensured prolonged biodegradation activity. Lindane degradation persisted 2.2 and 1.4 times longer for liquid and soil slurry microcosms, respectively, than that for inoculation with free cells. While inoculation of free-living cells led to a loss in lindane-degrading activity in limited time intervals, encapsulation in tubes allowed for a more stable actively degrading community. The loss in degrading activity was linked to the loss of the linA gene, encoding gamma-HCH dehydrochlorinase (LinA), which is involved in the initial steps of the lindane degradation pathway. This work shows that a slow-release inoculation approach using a catabolic strain encapsulated in open-ended tubes is a promising bioaugmentation tool for contaminated sites, as it can enhance pollutant removal and can prolong the degrading activity in comparison with traditional inoculation strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。