G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth

G-CSF 诱导的活性氧与 Lyn-PI3-激酶-Akt 有关,并促进髓系细胞生长

阅读:5
作者:Quan-Sheng Zhu, Ling Xia, Gordon B Mills, Clifford A Lowell, Ivo P Touw, Seth J Corey

Abstract

Granulocyte colony-stimulating factor (G-CSF) drives the production, survival, differentiation, and inflammatory functions of granulocytes. Reactive oxygen species (ROSs) provide a major thrust of the inflammatory response, though excessive ROSs may be deleterious. G-CSF stimulation showed a time- and dose-dependent increase in ROS production, correlating with activation of Lyn and Akt. Inhibition of Lyn, PI3-kinase, and Akt abrogated G-CSF-induced ROS production. This was also blocked by DPI, a specific inhibitor of NADPH oxidase. Following G-CSF stimulation, neutrophils from Lyn-/- mice produced less ROSs than wild-type littermates. G-CSF induced both serine phosphorylation and membrane translocation of p47phox, a subunit of NADPH oxidase. Because patients with a truncated G-CSF receptor have a high risk of developing acute myeloid leukemia (AML), we hypothesized that dysregulation of ROSs contributes to leukemogenesis. Cells expressing the truncated G-CSF receptor produced more ROSs than those with the full-length receptor. G-CSF-induced ROS production was enhanced in bone marrow-derived neutrophils expressing G-CSFRdelta715, a truncated receptor. The antioxidant N-acetyl-L-cysteine diminished G-CSF-induced ROS production and cell proliferation by inhibiting Akt activation. These data suggest that the G-CSF-induced Lyn-PI3K-Akt pathway drives ROS production. One beneficial effect of therapeutic targeting of Lyn-PI3K-kinase-Akt cascade is abrogating ROS production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。