Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Celiac Disease

CB2 受体调节对儿童乳糜泻巨噬细胞极化的影响

阅读:8
作者:Chiara Tortora, Alessandra Di Paola, Maura Argenziano, Mara Creoli, Maria Maddalena Marrapodi, Sabrina Cenni, Carlo Tolone, Francesca Rossi, Caterina Strisciuglio

Abstract

Celiac Disease (CD) represents an autoimmune disorder triggered by the exposure to gluten in genetically susceptible individuals. Recent studies suggest the involvement of macrophages in CD pathogenesis. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). The Cannabinoid Receptor 2 (CB2) has important anti-inflammatory and immunoregulatory properties. We previously demonstrated that a common CB2 functional variant, Q63R, causing CB2 reduced function, is associated with several inflammatory and autoimmune diseases The first aim of this study was to investigate the phenotype of macrophages isolated from peripheral blood of CD patients and CB2 expression. The second aim was to evaluate the effects of CB2 pharmacological modulation on CD macrophage polarization. Moreover, by an in vitro model of "immunocompetent gut" we investigated the role of CD macrophages in inducing intestinal barrier damage and the possibility to restore its functionality modulating their polarization. We found an increased expression of M1 macrophages and a CB2 reduced expression. We also demonstrated CD M1 macrophages in inducing the typical mucosal barrier damage of CD. CB2 stimulation switches macrophage polarization towards the anti-inflammatory M2 phenotype thus reducing inflammation but also limiting the epithelial dysfunction. Therefore, we suggest CB2 receptor as a possible novel therapeutic target for CD by regulating macrophages polarization and by preventing mucosal barrier damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。