Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors

通过内源性刺激香草酸受体,促进大鼠黑质谷氨酸能突触与多巴胺能神经元的突触前连接

阅读:18
作者:Silvia Marinelli, Vincenzo Di Marzo, Nicola Berretta, Isabel Matias, Mauro Maccarrone, Giorgio Bernardi, Nicola B Mercuri

Abstract

Growing evidence regarding the function of vanilloid receptor-1 (VR1) in the brain suggests potential central roles of this receptor, previously described to occur primarily in peripheral sensory neurons. In the present study, we used electrophysiological and biochemical techniques to investigate the function and the endogenous stimulation of VR1 in dopaminergic neurons of the substantia nigra pars compacta (SNc). The VR1 agonist capsaicin increased the frequency of both TTX-sensitive and -insensitive spontaneous EPSCs (sEPSCs) without affecting their amplitude, suggesting a presynaptic site of action. In contrast, no effect was detected with regard to GABAergic transmission. No increase in sEPSC frequency was observed in the presence of cadmium chloride, while the voltage-dependent calcium channel antagonist omega-conotoxin MVIIC did not prevent capsaicin action. The VR1 antagonists capsazepine and iodoresiniferatoxin (IRTX) blocked the effects of capsaicin. Importantly, IRTX per se reduced sEPSC frequency, suggesting a tonic activity of VR1. The endogenous VR1 agonist anandamide (AEA) produced an IRTX-sensitive increase in the frequency of sEPSCs on dopaminergic neurons that was more pronounced when protein kinase A had been activated. Furthermore, mass spectrometric analyses and binding experiments revealed high levels of endogenous AEA and specific binding of AEA to VR1 receptors in the SNc. These data suggest a tonic facilitation of glutamate release exerted by VR1 in the SNc through a stimulation of VR1 by endovanilloids, including anandamide. The increase in sEPSC frequency by VR1 onto midbrain dopaminergic neurons suggests the involvement of these receptors in motor and cognitive functions involving the dopaminergic system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。