RocS drives chromosome segregation and nucleoid protection in Streptococcus pneumoniae

RocS 驱动肺炎链球菌的染色体分离和核糖体保护

阅读:7
作者:Chryslène Mercy, Adrien Ducret, Jelle Slager, Jean-Pierre Lavergne, Céline Freton, Sathya Narayanan Nagarajan, Pierre Simon Garcia, Marie-Francoise Noirot-Gros, Nelly Dubarry, Julien Nourikyan, Jan-Willem Veening, Christophe Grangeasse

Abstract

Chromosome segregation in bacteria is poorly understood outside some prominent model strains1-5 and even less is known about how it is coordinated with other cellular processes. This is the case for the opportunistic human pathogen Streptococcus pneumoniae (the pneumococcus)6, which lacks the Min and the nucleoid occlusion systems7, and possesses only an incomplete chromosome partitioning Par(A)BS system, in which ParA is absent8. The bacterial tyrosine kinase9 CpsD, which is required for capsule production, was previously found to interfere with chromosome segregation10. Here, we identify a protein of unknown function that interacts with CpsD and drives chromosome segregation. RocS (Regulator of Chromosome Segregation) is a membrane-bound protein that interacts with both DNA and the chromosome partitioning protein ParB to properly segregate the origin of replication region to new daughter cells. In addition, we show that RocS interacts with the cell division protein FtsZ and hinders cell division. Altogether, this work reveals that RocS is the cornerstone of a nucleoid protection system ensuring proper chromosome segregation and cell division in coordination with the biogenesis of the protective capsular layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。