Effective Combination Therapies for B-cell Lymphoma Predicted by a Virtual Disease Model

通过虚拟疾病模型预测 B 细胞淋巴瘤的有效联合疗法

阅读:11
作者:Wei Du, Rebecca Goldstein, Yanwen Jiang, Omar Aly, Leandro Cerchietti, Ari Melnick, Olivier Elemento

Abstract

The complexity of cancer signaling networks limits the efficacy of most single-agent treatments and brings about challenges in identifying effective combinatorial therapies. In this study, we used chronic active B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma as a model system to establish a computational framework to optimize combinatorial therapy in silico We constructed a detailed kinetic model of the BCR signaling network, which captured the known complex cross-talk between the NFκB, ERK, and AKT pathways and multiple feedback loops. Combining this signaling model with a data-derived tumor growth model, we predicted viability responses of many single drug and drug combinations in agreement with experimental data. Under this framework, we exhaustively predicted and ranked the efficacy and synergism of all possible combinatorial inhibitions of eleven currently targetable kinases in the BCR signaling network. Ultimately, our work establishes a detailed kinetic model of the core BCR signaling network and provides the means to explore the large space of possible drug combinations. Cancer Res; 77(8); 1818-30. ©2017 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。