Simulation Analysis of Improving Microfluidic Heterogeneous Immunoassay Using Induced Charge Electroosmosis on a Floating Gate

浮栅感应电荷电渗改进微流控异质免疫分析的仿真分析

阅读:6
作者:Qingming Hu, Yukun Ren, Weiyu Liu, Ye Tao, Hongyuan Jiang

Abstract

On-chip immuno-sensors are a hot topic in the microfluidic community, which is usually limited by slow diffusion-dominated transport of analytes in confined microchannels. Specifically, the antigen-antibody binding reaction at a functionalized area cannot be provided with enough antigen source near the reaction surface, since a small diffusion flux cannot match with the quick rate of surface reaction, which influences the response time and sensitivity of on-chip heterogeneous immunoassay. In this work, we propose a method to enhance the transportation of biomolecules to the surface of an antibody-immobilized electrode with induce charge electroosmotic (ICEO) convection in a low concentration suspension, so as to improve the binding efficiency of microfluidic heterogeneous immunoassays. The circular stirring fluid motion of ICEO on the surface of a floating gate electrode at the channel bottom accelerates the transport of freely suspended antigen towards the wall-immobilized antibodies. We investigate the dependence of binding efficiency on voltage magnitude and field frequency of the applied alternate current (AC) electrical field. The binding rate yields a factor of 5.4 higher binding for an applied voltage of 4 V at 10 Hz when the Damkohler number is 1000. The proposed microfluidic immuno-sensor technology of a simple electrode structure using ICEO convective fluid flow around floating conductors could offer exciting opportunities for diffusion-limited on-chip bio-microfluidic sensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。